A comparison of methods for characterizing the event-related BOLD timeseries in rapid fMRI.
نویسنده
چکیده
Information about the shape and temporal duration of the blood oxygenation level dependent (BOLD) response can inform both functional neuroanatomy and psychological theory. However, the BOLD response evolves over 20 s or more, making it difficult to distinguish the unique characteristics of the response evoked by temporally adjacent stimuli. Fortunately, event-related BOLD signals can be extracted given that there is adequate variance in the distribution of inter-stimulus intervals (ISI). Unfortunately, the ISI distribution that yields the highest statistical efficiency is not always optimal from a psychological perspective; variability in the stimulus timing may complicate the interpretation of neuroimaging data in terms of underlying cognitive operations. In the present paper, Monte Carlo simulations are used to evaluate two techniques for estimating the event-related BOLD timeseries-event-related averaging and deconvolution using the Ordinary Least Squares estimate -with respect to maintaining acceptable levels of statistical power and experimental validity. While the unbiased deconvolution technique more robustly estimates the shape of the BOLD response functions, both methods succeed in accurately re-producing known differences between evoked BOLD responses when the stimulus ordering is randomized. However, the deconvolution method is more effective at preserving differences when there are sequential dependencies in the stimulus presentation order and restricted ISI distributions are used; particularly if the second of two sequentially dependent stimuli is omitted on some portion of the trials. Importantly, the successful re-production of the evoked BOLD response using restricted ISI distributions often maximizes the ability to make psychologically valid experimental conclusions.
منابع مشابه
Evaluation of Sensory Pathways in Spinal Cord by Comparison of fMRI Methodologies
Introduction: Today, clinicians and neuroscientists need to have a comprehensive survey of neurological pathologies and injuries. For the First-time, SEEP contrast and Spin-Echo pulse sequences was used for functional imaging of the Lumbar spinal cord. This method used by several research groups for Spinal cord mapping, but other researchers tried to improve BOLD fMRI to Spina...
متن کاملEffect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI
Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...
متن کاملCombined MEG and fMRI model
An integrated model for magnetoencephalography (MEG) and functional Magnetic Resonance Imaging (fMRI) is proposed. In the proposed model, MEG and fMRI outputs are related to the corresponding aspects of neural activities in a voxel. Post synaptic potentials (PSPs) and action potentials (APs) are two main signals generated by neural activities. In the model, both of MEG and fMRI are related to t...
متن کاملAccounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies.
Nonlinear effects in fMRI BOLD data may substantially influence estimates of task-related activations, particularly in rapid event-related designs. If the BOLD response to each stimulus is assumed to be independent of the stimulation history, nonlinear interactions create a prediction error that may reduce sensitivity. When stimulus density differs among conditions, nonlinear effects can cause ...
متن کاملEvent-related fMRI: comparison of conditions with varying BOLD overlap.
Recently, event-related fMRI-experiments have been reported in which subsequent trials were separated by only 2 sec or less. Because the BOLD response needs 10 sec and longer to return to baseline, the event-related signal in these experiments has to be extracted from the overlapping responses elicited by successive trials. Usually it is assumed that this convolved signal is a summation of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2004